Validation and generalizability of machine learning prediction models on attrition in longitudinal studies
نویسندگان
چکیده
Attrition in longitudinal studies is a major threat to the representativeness of data and generalizability findings. Typical approaches address systematic nonresponse are either expensive unsatisfactory (e.g., oversampling) or rely on unrealistic assumption missing at random multiple imputation). Thus, models that effectively predict who most likely drops out subsequent occasions might offer opportunity take countermeasures incentives). With current study, we introduce model validation approach examine whether attrition two nationally representative panel can be predicted accurately. We compare performance basic logistic regression with more flexible, data-driven machine learning algorithm—gradient boosting machines. Our results show almost no difference accuracies for both modeling approaches, which contradicts claims similar survey attrition. Prediction could not generalized across surveys were less accurate when tested later wave. discuss implications these findings retention, use complex algorithms, give some recommendations deal study
منابع مشابه
simulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملthe role of vocabulary learning strategies on vocabulary retention and on language proficiency in iranian efl students
آموزش زبان دوم طی سالهای اخیر بدنبال روشهای بهتری برای تحقق بخشیدن به اهداف معلمین و دانش آموزان بوده است . در مورد معلمین این امر منجر به تحقیقاتی در مورد ساختار زبانی، محاوره ای و تعاملی گردیده است . در مورد دانش آموزان این امر به مطالعاتی درباره نگرش دانش آموزان نسبت به فراگیری در داخل کلاس و بیرون از آن و همچنین انواع مختلف روشهای پردازش ذهنی منجر شده است . هدف از این تحقیق یافتن روشهائی اس...
15 صفحه اولThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملindividual qualities and integrative motivation and their prediction of non-linguistic outcomes of learning english in intermediate iranian students: a psychological perspective
abstract this study investigated the predictability of variables from a motivational framework as well as individuals qualities to predict three non-linguistic outcomes of language learning. gardners socio-educational model with its measures has been used in the current study. individual qualities presented in this study include (1) age, (2) gender, and (3) language learning experience. the...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Behavioral Development
سال: 2022
ISSN: ['1464-0651', '0165-0254']
DOI: https://doi.org/10.1177/01650254221075034